Differentiable Architecture Search (DARTS) has attracted considerable attention as a gradient-based Neural Architecture Search (NAS) method. Since the introduction of DARTS, there has been little work done on adapting the action space based on state-of-art architecture design principles for CNNs. In this work, we aim to address this gap by incrementally augmenting the DARTS search space with micro-design changes inspired by ConvNeXt and studying the trade-off between accuracy, evaluation layer count, and computational cost. To this end, we introduce the Pseudo-Inverted Bottleneck conv block intending to reduce the computational footprint of the inverted bottleneck block proposed in ConvNeXt. Our proposed architecture is much less sensitive to evaluation layer count and outperforms a DARTS network with similar size significantly, at layer counts as small as 2. Furthermore, with less layers, not only does it achieve higher accuracy with lower GMACs and parameter count, GradCAM comparisons show that our network is able to better detect distinctive features of target objects compared to DARTS.
translated by 谷歌翻译
This paper deals with the problem of statistical and system heterogeneity in a cross-silo Federated Learning (FL) framework where there exist a limited number of Consumer Internet of Things (CIoT) devices in a smart building. We propose a novel Graph Signal Processing (GSP)-inspired aggregation rule based on graph filtering dubbed ``G-Fedfilt''. The proposed aggregator enables a structured flow of information based on the graph's topology. This behavior allows capturing the interconnection of CIoT devices and training domain-specific models. The embedded graph filter is equipped with a tunable parameter which enables a continuous trade-off between domain-agnostic and domain-specific FL. In the case of domain-agnostic, it forces G-Fedfilt to act similar to the conventional Federated Averaging (FedAvg) aggregation rule. The proposed G-Fedfilt also enables an intrinsic smooth clustering based on the graph connectivity without explicitly specified which further boosts the personalization of the models in the framework. In addition, the proposed scheme enjoys a communication-efficient time-scheduling to alleviate the system heterogeneity. This is accomplished by adaptively adjusting the amount of training data samples and sparsity of the models' gradients to reduce communication desynchronization and latency. Simulation results show that the proposed G-Fedfilt achieves up to $3.99\% $ better classification accuracy than the conventional FedAvg when concerning model personalization on the statistically heterogeneous local datasets, while it is capable of yielding up to $2.41\%$ higher accuracy than FedAvg in the case of testing the generalization of the models.
translated by 谷歌翻译
Reinforcement learning (RL) gained considerable attention by creating decision-making agents that maximize rewards received from fully observable environments. However, many real-world problems are partially or noisily observable by nature, where agents do not receive the true and complete state of the environment. Such problems are formulated as partially observable Markov decision processes (POMDPs). Some studies applied RL to POMDPs by recalling previous decisions and observations or inferring the true state of the environment from received observations. Nevertheless, aggregating observations and decisions over time is impractical for environments with high-dimensional continuous state and action spaces. Moreover, so-called inference-based RL approaches require large number of samples to perform well since agents eschew uncertainty in the inferred state for the decision-making. Active inference is a framework that is naturally formulated in POMDPs and directs agents to select decisions by minimising expected free energy (EFE). This supplies reward-maximising (exploitative) behaviour in RL, with an information-seeking (exploratory) behaviour. Despite this exploratory behaviour of active inference, its usage is limited to discrete state and action spaces due to the computational difficulty of the EFE. We propose a unified principle for joint information-seeking and reward maximization that clarifies a theoretical connection between active inference and RL, unifies active inference and RL, and overcomes their aforementioned limitations. Our findings are supported by strong theoretical analysis. The proposed framework's superior exploration property is also validated by experimental results on partial observable tasks with high-dimensional continuous state and action spaces. Moreover, the results show that our model solves reward-free problems, making task reward design optional.
translated by 谷歌翻译
视频框架插值〜(VFI)算法近年来由于数据驱动算法及其实现的前所未有的进展,近年来有了显着改善。最近的研究引入了高级运动估计或新颖的扭曲方法,以解决具有挑战性的VFI方案。但是,没有发表的VFI作品认为插值误差(IE)的空间不均匀特征。这项工作引入了这样的解决方案。通过密切检查光流与IE之间的相关性,本文提出了新的错误预测指标,该指标将中间框架分为与不同IE水平相对应的不同区域。它基于IE驱动的分割,并通过使用新颖的错误控制损耗函数,引入了一组空间自适应插值单元的合奏,该单元逐步处理并集成了分段区域。这种空间合奏会产生有效且具有诱人的VFI解决方案。对流行视频插值基准测试的广泛实验表明,所提出的解决方案在当前兴趣的应用中优于当前最新(SOTA)。
translated by 谷歌翻译
这项工作介绍了一个新颖的知识蒸馏框架,用于分类任务,其中可用并考虑到现有子类信息。在具有少量类或二进制检测的分类任务中,从教师到学生的信息量受到限制,从而限制了知识蒸馏的效用。通过利用类中可能的子类信息可以提高性能。为此,我们提出了所谓的子类知识蒸馏(SKD),这是将预测子类知识从老师转移到较小学生的过程。在老师的课堂逻辑中不存在的有意义的信息,而是在子类徽标中存在(例如,课堂内的相似之处)将通过SKD传达给学生,然后将提高学生的表现。从分析上,我们衡量教师可以通过SKD向学生提供多少额外信息,以证明我们工作的功效。开发的框架是在临床应用中评估的,即结直肠息肉分类。这是两个类别和每个类的许多子类的实际问题。在此应用程序中,使用临床医生提供的注释来根据注释标签的学习方式来定义子类。接受SKD框架训练的轻巧,低复杂的学生的F1得分为85.05%,提高了1.47%,比学生分别接受和没有常规知识蒸馏的学生获得了2.10%的收益。接受和没有SKD的学生之间的2.10%的F1得分差距可以通过额外的子类知识来解释,即,每个样本的额外的0.4656标签位可以在我们的实验中转移。
translated by 谷歌翻译
肺癌是最致命的癌症之一,部分诊断和治疗取决于肿瘤的准确描绘。目前是最常见的方法的人以人为本的分割,须遵守观察者间变异性,并且考虑到专家只能提供注释的事实,也是耗时的。最近展示了有前途的结果,自动和半自动肿瘤分割方法。然而,随着不同的研究人员使用各种数据集和性能指标验证了其算法,可靠地评估这些方法仍然是一个开放的挑战。通过2018年IEEE视频和图像处理(VIP)杯竞赛创建的计算机断层摄影扫描(LOTUS)基准测试的肺起源肿瘤分割的目标是提供唯一的数据集和预定义的指标,因此不同的研究人员可以开发和以统一的方式评估他们的方法。 2018年VIP杯始于42个国家的全球参与,以获得竞争数据。在注册阶段,有129名成员组成了来自10个国家的28个团队,其中9个团队将其达到最后阶段,6队成功完成了所有必要的任务。简而言之,竞争期间提出的所有算法都是基于深度学习模型与假阳性降低技术相结合。三种决赛选手开发的方法表明,有希望的肿瘤细分导致导致越来越大的努力应降低假阳性率。本次竞争稿件概述了VIP-Cup挑战,以及所提出的算法和结果。
translated by 谷歌翻译
分布式多智能经纪增强学习(Marl)算法最近引起了兴趣激增,主要是由于深神经网络(DNN)的最新进步。由于利用固定奖励模型来学习基础值函数,传统的基于模型(MB)或无模型(MF)RL算法不可直接适用于MARL问题。虽然涉及单一代理时,基于DNN的解决方案完全良好地表现出,但是这种方法无法完全推广到MARL问题的复杂性。换句话说,尽管最近的基于DNN的DNN用于多种子体环境的方法取得了卓越的性能,但它们仍然容易出现过度,对参数选择的高敏感性,以及样本低效率。本文提出了多代理自适应Kalman时间差(MAK-TD)框架及其继任者表示的基于代表的变体,称为MAK-SR。直观地说,主要目标是利用卡尔曼滤波(KF)的独特特征,如不确定性建模和在线二阶学习。提议的MAK-TD / SR框架考虑了与高维多算法环境相关联的动作空间的连续性,并利用卡尔曼时间差(KTD)来解决参数不确定性。通过利用KTD框架,SR学习过程被建模到过滤问题,其中径向基函数(RBF)估计器用于将连续空间编码为特征向量。另一方面,对于学习本地化奖励功能,我们求助于多种模型自适应估计(MMAE),处理缺乏关于观察噪声协方差和观察映射功能的先前知识。拟议的MAK-TD / SR框架通过多个实验进行评估,该实验通过Openai Gym Marl基准实施。
translated by 谷歌翻译
由于Covid-19大流行,对远程学习/工作和远程医疗对电信的需求显着增加。 6G网络中的移动边缘缓存(MEC)已被发展为一种有效的解决方案,以满足全球移动数据流量的现象增长,使多媒体内容更接近用户。虽然MEC网络使能的大规模连接将显着提高通信质量,但未来有几个关键挑战。边缘节点的有限存储,大尺寸的多媒体内容以及时变用户的偏好使得能够有效地和动态地预测内容的普及,以存储在被请求之前存储最多即将到来的请求的。深度神经网络(DNN)的最新进展绘制了很多研究,以预测主动缓存方案中的内容普及。然而,在此上下文中存在的现有DNN模型遭受Longterm依赖关系,计算复杂性和不适合并行计算的不适合性。为了解决这些挑战,我们提出了一个边缘缓存框架,其与关注的视觉变压器(VIV)神经网络引入,称为基于变压器的边缘(TEGED)缓存,这是我们所知的最佳知识,正在研究第一次。此外,TEGECACH CACHING框架不需要数据预处理和附加的上下文信息。仿真结果与其对应物相比,证实了提出的TEGECACHING框架的有效性。
translated by 谷歌翻译
计算机愿景领域正在快速发展,特别是在神经结构设计的新方法的背景下。这些模型有助于(1)气候危机 - 增加二氧化碳排放量和(2)隐私危机 - 数据泄漏问题。为了解决经常忽视的影响计算机愿景(CV)社区对这些危机,我们概述了一个新颖的道德框架,\ Textit {P4ai}:AI的原则,是AI内伦理困境的增强原则看法。然后,我们建议使用P4AI向社区制定具体的建议,以减轻气候和隐私危机。
translated by 谷歌翻译
气候变化仍然是一个迫在眉睫的问题,目前影响社会大。重要的是,我们作为一个社会,包括计算机愿景(CV)社区采取措施限制对环境的影响。在本文中,我们(a)分析了CV方法递减递减的效果,(b)提出了一种\ entyit {'nofade''}:一种基于新的基于熵的度量来量化模型 - 数据集 - 复杂性关系。我们表明一些简历的任务正在达到饱和度,而其他CV任务几乎完全饱和。在这种光中,Nofade允许CV社区在类似的基础上比较模型和数据集,建立不良平台。
translated by 谷歌翻译